Threshold Based Algorithms for Iron Buried Objects Detection Using Magnetic Field Mapping
نویسندگان
چکیده
Results for different parameter T Cell Averaging based threshold algorithm Abstract — Magnetic field mapping is one of the techniques that may be used during the continuation period of an on-site inspection. Iron buried objects induce anomalies in the earth’s magnetic field that appear on the surface below items and that can be measured by a magnetometer. In this work, two approaches already used in radar detection are introduced and modified to improve the buried object detection. The measurement noises, the weak value of the earth’s magnetic field and the variations due to the soil heterogeneity increase the false alarm probability. In order to reduce this last, we introduce a cell-averaging-based threshold algorithm used in radar detection. It consists of doing a comparison between each measure and a weighted average of the neighbor measures. The proposed algorithm is validated using simulation data and promising results have been obtained.
منابع مشابه
3D Modelling of Under Ground Burried Objects Based on Ground Penetration Radar
There is a growing demand for mapping and 3D modelling of buried objects such as pipelines, agricultural hetitage, landmines and other buried objects. Usually, large scale and high resolution maps from these objects are needed. Manually map generation and modeling of these objects are cost and time consuming and is dependent on lots of resources. Therefore, automating the subsurface mapping and...
متن کاملGeological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering
This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملNovel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform
In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...
متن کاملMagnetic Calibration of Three-Axis Strapdown Magnetometers for Applications in Mems Attitude-Heading Reference Systems
In a strapdown magnetic compass, heading angle is estimated using the Earth's magnetic field measured by Three-Axis Magnetometers (TAM). However, due to several inevitable errors in the magnetic system, such as sensitivity errors, non-orthogonal and misalignment errors, hard iron and soft iron errors, measurement noises and local magnetic fields, there are large error between the magnetometers'...
متن کامل